Search results for " Spin Systems"

showing 6 items of 6 documents

Tripartite thermal correlations in an inhomogeneous spin-star system

2010

We exploit the tripartite negativity to study the thermal correlations in a tripartite system, that is the three outer spins interacting with the central one in a spin-star system. We analyze the dependence of such correlations on the homogeneity of the interactions, starting from the case where central-outer spin interactions are identical and then focusing on the case where the three coupling constants are different. We single out some important differences between the negativity and the concurrence.

Coupling constantPhysicsQuantum PhysicsSpinsCondensed matter physicsFOS: Physical sciencesConcurrenceNegativity effectCondensed Matter PhysicsAtomic and Molecular Physics and OpticsStar systemThermalHomogeneity (physics)Quantum Physics (quant-ph)Entanglement Thermodynamics Spin systems
researchProduct

Correlation at low temperature I. Exponential decay

2003

Abstract The present paper generalizes the analysis in (Ann. H. Poincare 1 (2000) 59, Math. J. (AMS) 8 (1997) 123) of the correlations for a lattice system of real-valued spins at low temperature. The Gibbs measure is assumed to be generated by a fairly general Hamiltonian function with pair interaction. The novelty, as compared to [2,20], is that the single-site (self-) energies of the spins are not required to have only a single local minimum and no other extrema. Our derivation of exponential decay of correlations goes through the spectral analysis of a deformed Laplacian closely related to the Witten Laplacian studied in [2,20]. We prove that this Laplacian has a spectral gap above zero…

Hamiltonian mechanicsExponential decay of correlationsSpinsZero (complex analysis)Lattice spin systemsGibbs measuresymbols.namesakeExponential growthQuantum mechanicssymbolsSpectral gapWitten LaplacianGibbs measureExponential decayLaplace operatorAnalysisMathematics
researchProduct

Coupling-assisted Landau-Majorana-Stückelberg-Zener transition in a system of two interacting spin qubits

2019

We analyse a system of two interacting spin-qubits subjected to a Landau-Majorana-Stuckelberg-Zener (LMSZ) ramp. We prove that LMSZ transitions of the two spin-qubits are possible without an external transverse static field since its role is played by the coupling between the spin-qubits. We show how such a physical effect could be exploited to estimate the strength of the interaction between the two spin-qubits and to generate entangled states of the system by appropriately setting the slope of the ramp. Moreover, the study of effects of the coupling parameters on the time-behaviour of the entanglement is reported. Finally, our symmetry-based approach allows us to discuss also effects stem…

PhysicsDephasingQuantum PhysicsQuantum entanglement01 natural sciencesSymmetry (physics)010305 fluids & plasmasMAJORANACoupling (physics)Quantum mechanicsQubit0103 physical sciencesZener diodeLandau-Zener Dynamics Spin Systems Entanglement Production and Manipulation010306 general physicsSpin-½Physical Review B
researchProduct

Entanglement sudden death and sudden birth in two uncoupled spins

2009

We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory.

PhysicsQuantum PhysicsSpinsFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsSudden deathAtomic and Molecular Physics and OpticsQuantum mechanicsQubitLarge applicationsQuantum informationQuantum Physics (quant-ph)Mathematical PhysicsSpin-½entanglement spin systems
researchProduct

Thermal localizable entanglement in a simple multipartite system

2009

The quantum correlations present in a system of three coupled spins 12 in a thermal state are investigated. Localizable entanglement, as well as concurrence function, is exactly evaluated. The results obtained show the existence of a temperature range corresponding to which it is impossible to localize entanglement.

PhysicsSpinsConcurrenceQuantum PhysicsQuantum entanglementCondensed Matter PhysicsSquashed entanglementMultipartite entanglementAtomic and Molecular Physics and OpticsMultipartiteQuantum mechanicsW stateQuantumMathematical Physicsentanglement spin systems
researchProduct

Interpreting concurrence in terms of covariances in a generalized spin star system

2006

The quantum dynamics of M pairwise coupled spin 1/2 is analyzed and the time evolution of the entanglement get established within a prefixed couple of spins is studied. A conceptual and quantitative link between the concurrence function and measurable quantities is brought to light providing a physical interpretation for the concurrence itself as well as a way to measure it. A generalized spin star system is exactly investigated showing that the entanglement accompanying its rich dynamics is traceable back to the covariance of appropriate commuting observables of the two spins.

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)entanglement spin systems
researchProduct